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ABSTRACT

This paper considers the real-time and nonparametric detec-
tion of anomalies in high-dimensional systems. The goal
is to detect anomalies quickly and accurately such that the
appropriate countermeasures could be taken before any pos-
sible harm is caused by the anomalous event. We propose
a kNN-based sequential anomaly detection method in both
semi-supervised and supervised settings. We prove that the
proposed method is asymptotically optimum in the minimax
sense under certain conditions in terms of minimizing the
average detection delay for a given false alarm constraint.
The proposed method is shown to be capable of multivari-
ate anomaly detection and also scalable to high-dimensional
datasets. We further propose an online learning scheme that
combines the desirable properties of our semi-supervised and
supervised methods.

Index Terms— anomaly detection, nonparametric meth-
ods, online learning

1. INTRODUCTION

Anomaly detection is an important problem which deals with
the identification of abnormal data patterns which do not con-
form to the normal behavior of a system. It has applications in
a wide range of domains, such as cyber-security [1, 2], qual-
ity control, medical health care [3], video surveillance [4],
credit card fraud detection, etc. The importance of anomaly
detection lies in the fact that an anomaly in the observations is
usually due to an unwanted behavior/event in the underlying
system that needs to be dealt with by a field specialist. Due to
the potential unpleasant and even catastrophic consequences
of an undetected anomalous event in the system, it is crucial
to quickly and accurately detect the anomalies in the observa-
tions so that the appropriate countermeasures could be taken
in time.

Statistical anomaly detection approaches consider an
anomaly as a change in the probability distribution of data,
e.g., change in the mean, variance or correlation structure
between individual data-streams. Multivariate anomaly de-
tection has the potential to achieve better performance in

comparison to univariate detection, especially in challenging
settings. For instance, detecting the anomalous observations
that appear to be normal (e.g., as a result of a malicious activ-
ity), and the detection of a change in the correlation structure
of data [5] are two examples that highlight the importance
of multivariate analysis and joint monitoring of data-streams,
which in turn, leads to the high-dimensionality challenge.
A practical multivariate anomaly detection method needs to
scale well to high-dimensional data in real-time.

Parametric anomaly detection methods assume knowl-
edge of the underlying probability distributions. Hence,
parametric methods are not effectively applicable to high-
dimensional real-world problems with complex distributions.
Additionally, these methods are limited to the detection of
certain types of anomalies that match the assumed distribu-
tions well. Nonparametric techniques, on the other hand,
do not assume specific probability distributions for the data.
Nonparametric anomaly detection methods based on k near-
est neighbors (kNN) are proposed in several works, e.g.,
[6, 7, 8, 9]. These geometric methods are based on the
assumption that anomalous instances occur in the less con-
centrated regions of the nominal data space. Although the
methods proposed in [6, 7] are effective in multivariate
anomaly detection in high-dimensional data, they are not
well suited for accurate detection in real-time systems as
they do sample-by-sample detection without considering the
sequential aspect of anomalies [10]. While [8] has a sequen-
tial nature, its computational complexity is not suitable for
real-time applications.

Motivated by the aforementioned challenges, aiming at
timely and accurate detection of anomalies in high-dimensional
systems, in this paper we (i) provide a proof for the asymp-
totic optimality of the nonparametric sequential method pro-
posed in [9] in the minimax sense, (ii) propose an extension
for supervised settings with training data available for both
nominal and anomalous cases, and (iii) introduce an online
learning scheme by combining the advantages of both super-
vised and semi-supervised variants.

The rest of the paper is organized as follow. In Sec-
tion 2, we present the problem formulation and the related
background information. In Section 3, we present the semi-
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supervised, supervised, and unified variants of our anomaly
detection method. The experimental results on simulated data
and a real dataset are provided in Section 4. Finally, the paper
is concluded in Section 5.

2. PROBLEM FORMULATION

Suppose that a system is sequentially monitored through d-
dimensional observations Xt = {x1,x2, ...,xt} in time. As-
suming an abrupt and persistent anomaly occurs at an un-
known time τ in the observations, the objective is to detect
the anomaly as soon as possible while satisfying a false alarm
constraint. This problem is typically formulated as an online
change detection problem:

f = f0, t < τ, f = f1( �= f0), t ≥ τ, (1)

where f is the true probability distribution of observations,
and f0 and f1 are the nominal and anomalous probability dis-
tributions, respectively. The objective of the problem is to
find the stopping time T that minimizes the average detection
delay while satisfying a false alarm constraint, i.e.,

inf
T

Eτ [(T − τ)+] subject to E∞[T ] ≥ β, (2)

where Eτ represents the expectation given that change occurs
at τ , (.)+ = max(., 0), and E∞[T ] denotes the expectation of
false alarm period.

Lorden’s minimax problem is a commonly used version
of the above problem [11], in which the goal is to minimize
the worst-case average detection delay subject to a false alarm
constraint:

inf
T

sup
τ

ess sup
Xτ

Eτ [(T − τ)+|Xτ ] s.t. E∞[T ] ≥ β, (3)

where “ess sup” denotes essential supremum that is equiva-
lent to supremum in practice. In short, the minimax criterion
minimizes the average detection delay for the least favorable
change-point and the least favorable history of measurements
up to the change-point while the average false alarm period is
constrained by β.

The Cumulative Sum (CUSUM) detector provides the op-
timum solution to the minimax problem [12], given by (3),

St = max{0, St−1 + �t},
Tc = inf{t : St ≥ hc},

(4)

where Tc is the stopping time, St is the test statistic, �t =

log f1(xt)
f0(xt)

is the log-likelihood ratio at time t, S0 = 0, and
hc is the predefined decision threshold. Considering �t as a
statistical evidence for anomaly, the CUSUM algorithm ac-
cumulates the evidences over time, and stops when the cumu-
lative evidence St is sufficiently high for reliable detection,
where the level of “sufficiently high” is represented by hc and
chosen to satisfy the false alarm constraint β.

CUSUM requires the complete knowledge of the proba-
bility distributions f0 and f1, which are typically unknown in
real-world applications. Generalized CUSUM (G-CUSUM)
is a variation of CUSUM which knowing the distributions,
estimates the parameters of f0 and f1 by maximum likeli-
hood estimation and achieves asymptotic optimality. More-
over, CUSUM and in general parametric methods are limited
to the detection of certain anomaly types whose true proba-
bility distribution matches the assumed f1 well.

3. THE PROPOSED METHOD

3.1. Online Discrepancy Test (ODIT)

We have recently proposed a kNN-based sequential anomaly
detection method, called Online Discrepancy Test (ODIT)
[9], and demonstrated its applications to cyberattack detec-
tion in smart grid [1], network intrusion detection [13], and
intelligent transportation systems [14]. In this section, we
present a modification for ODIT and prove its asymptotic
optimality in the minimax sense under certain conditions.
ODIT combines the sequential nature of CUSUM and the
nonparametric nature of the Geometric Entropy Minimiza-
tion (GEM) method [6] for multivariate and online anomaly
detection. In a semi-supervised fashion, ODIT trains only on
nominal data to learn a statistical description of normal sys-
tem behavior, and tests the new observations in a sequential
manner against the learned nominal model. We next describe
the ODIT procedure with the proposed modification.

Considering a nominal training set XN of size N , ODIT
partitions XN into two sets XN1 and XN2 , where N1 +N2 =
N , for computational efficiency as in the bipartite GEM algo-
rithm [7]. Then, it computes the Euclidean distances between
each point xm ∈ XN1

and its k nearest neighbors in XN2
.

The total kNN distance of xm is defined as

Lm =
k∑

n=k−s+1

gn(xm)γ , (5)

where gn(xm) is the Euclidean distance between point xm ∈
XN1

and its nth nearest neighbor in XN2
, s ∈ {1, . . . , k} is

a fixed number introduced for convenience, and γ > 0 is a
weight also introduced for flexibility. Given a significance
level α ∈ (0, 1), e.g., 0.05, the training phase is finished
by choosing the (1 − α)th percentile of total kNN distances
{Lm}. That is, ODIT selects the Kth smallest distance L(K),
where K = �N1(1−α)�, as a baseline statistic for measuring
the deviation of new observations from the nominal dataset in
the test phase. In other words, in the training phase, ODIT
practically learns the most compact region in the nominal data
geometry.

During the test phase, for each observation xt, ODIT
computes the total kNN distance Lt with respect to the nom-
inal points in XN2

using (5), and computes the anomaly
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evidence as

Dt = d(logLt − logL(K)), (6)

where d is the dimensionality of the data. This equation is
the modification that we propose for ODIT in this paper. In
[9], Dt has the simpler form Dt = Lt − L(K). Although this
simpler form of Dt and the form proposed in (6) have similar
difference structures, and they perform quite similarly in prac-
tice, the new form given in (6) naturally appears while prov-
ing the asymptotic optimality of ODIT in the minimax sense,
as shown in Theorem 1. Dt denotes a positive/negative evi-
dence for anomaly. Positive Dt suggests that the observation
lies outside the estimated most compact set of the nominal
training set, hence it provides a positive evidence for anomaly.
ODIT recursively updates a detection statistic Δt by accumu-
lating the anomaly evidences over time. The test continues
until the first time Δt exceeds a predefined threshold h, sug-
gesting that there is sufficient evidence supporting anomaly in
the observations. The update and decision rule of ODIT are
given as

Δt = max{Δt−1 +Dt, 0}, Δ0 = 0,

T = min{t : Δt ≥ h}, (7)

which is a CUSUM-like procedure (cf. (4)). The ODIT pro-
cedure is summarized in Algorithm 1.

Selection of the ODIT parameters either directly or indi-
rectly controls the balance between average detection delay
and false alarm probability. Regarding the alarm threshold h,
which is the main parameter in this trade-off, larger h would
decrease the false alarm rate at the expense of larger detec-
tion delays, and vice versa for smaller h. The significance
level α, being an intermediate parameter, indirectly controls
this trade-off. In practice, α is set to a typical value, such
as 0.05, and then h is selected to satisfy a desired false alarm
rate. Regarding the training set sizes, N2 determines the accu-
racy of likelihood estimation, as shown in Theorem 1, while
N1 determines how well the significance level α is satisfied.
Therefore, N2 plays a more important role, and should be
chosen larger than N1, where N1 +N2 = N .

Theorem 1. When the nominal distribution f0(xt) is finite
and continuous, and the attack distribution f1(xt) is a uni-
form distribution, as the training set grows, the ODIT statistic
Dt converges in probability to the log-likelihood ratio,

Dt
p→ log

f1(xt)

f0(xt)
as N → ∞, (8)

i.e., the ODIT converges to CUSUM, which is minimax opti-
mum in minimizing expected detection delay while satisfying
a false alarm constraint.

Proof. Consider a hypersphere St ∈ R
d centered at xt

with radius gk(xt), the kNN distance of xt with respect

Algorithm 1 The proposed ODIT procedure

1: Input: XN , k, s, α, h
2: Initialize: Δ ← 0, t ← 1
3: Training phase:
4: Partition XN into two sets XN1 and XN2

5: For each xm ∈ XN1 compute Lm as in (5)
6: Find L(K) by selecting the Kth smallest Lm

7: Test phase:
8: while Δ < h do
9: Get new data xt and compute Dt as in (6)

10: Δ = max{Δ+Dt, 0}
11: t ← t+ 1

12: Declare Anomaly

to the training set XN . The maximum likelihood estimate
for the probability of a point being inside St under f0 is
given by k/N . It is known that, as the total number of
points grow, this binomial probability estimate converges
to the true probability mass in St in the mean square sense

[15], i.e., k/N L2

→ ∫
St

f0(x) dx as N → ∞. Hence, the

probability density estimate f̂0(xt) = k/N
Vdgk(xt)d

, where
Vdgk(xt)

d is the volume of St with the appropriate con-
stant Vd, converges to the actual probability density func-
tion, f̂0(xt)

p→ f0(xt) as N → ∞, since St shrinks
and gk(xt) → 0. Similarly, considering a hypersphere
S(K) ∈ R

d around x(K) which includes k points with its
radius gk(x(K)), we see that as N → ∞, gk(x(K)) → 0

and f̂0(x(K)) = k/N
Vdgk(x(K))d

p→ f0(x(K)). Assuming a
uniform distribution f1(x) = f0(x(K)), ∀x, we conclude

with log

k/N

Vdgk(x(K))
d

k/N

Vdgk(xt)
d

= d
[
log gk(xt)− log gk(x(K))

] p→

log f1(xt)
f0(xt)

as N → ∞, where Lt = gk(xt) for s = γ = 1.
For γ values different than 1, Dt converges to the log-
likelihood ratio scaled by γ. �

Note that ODIT does not train on any anomalous data.
While this generality is an attractive trait as it allows detection
of any statistical anomaly, it also inevitably limits the perfor-
mance for known anomaly types on which detectors can train.
We will next extend ODIT to this case, where there is some
available anomaly information. In Theorem 1, we show that
in the lack of knowledge about anomalies, ODIT reasonably
assumes an uninformative uniform likelihood for the anomaly
case, and achieves asymptotic optimality under this assump-
tion in the CUSUM-sense for certain parameter choices.

3.2. An Extension: ODIT-2

In this section we consider the case of having an anomaly
training dataset in addition to the previously discussed nom-
inal dataset. We extend the ODIT algorithm to take advan-
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tage of the anomaly dataset in order to improve the per-
formance. Consider the nominal and anomalous datasets
of XN = {x1,x2, ...,xN} and X ′

M = {x′
1,x

′
2, ...,x

′
M},

respectively. In this case, the anomaly evidence for each
observation instance can be computed by comparing the total
distance Lt with respect to XN to the total distance L′

t with
respect to X ′

M . Hence, ODIT-2 doesn’t require the borderline
total distances of the train data to use as a baseline in testing
(cf. 6). This implies that no training is needed for ODIT-2.

During the test phase, the anomaly evidence for each ob-
servation instance xt is calculated by

Dt = d(logLt − logL′
t) + log(N/M), (9)

where Lt and L′
t are the total kNN distances of xt with re-

spect to the points in XN and X ′
M , respectively; and N and M

are the number of points in the nominal and anomalous train-
ing sets. The statistic update and decision rule of ODIT-2 are
computed in the same way as ODIT, given by (7).

The anomaly evidence Dt of ODIT-2 practically contrasts
the new observation against the nominal and anomaly train-
ing data and computes a measure of how well xt is aligned
with the anomaly class as compared to the nominal class. The
positive Dt suggests that the new observation is closer to the
description of the anomaly class, compared to the nominal
class. Due to the inherent difficulty in collecting anomaly
samples, typically there is an imbalance between the nomi-
nal and anomaly training sets. The total kNN distances in a
dense nominal set XN are expected to be small as compared
with the total kNN distances in a sparse anomaly dataset. The
term log(N/M) is used as normalization factors to deal with
such imbalance.

Corollary 1. When the nominal distribution f0(xt) and
anomalous distribution f1(xt) are finite and continuous, as
the training sets grow, the ODIT-2 statistic Dt, given by (9),
converges in probability to the log-likelihood ratio,

Dt
p→ log

f1(xt)

f0(xt)
as M,N → ∞, (10)

i.e., ODIT-2 converges to CUSUM, which is minimax opti-
mum in minimizing expected detection delay while satisfying
a false alarm constraint.

Proof. From proof of Theorem 1, we know that k/N
Vdgk(xt)d

p→
f0(xt) as N → ∞. Similarly, we can show that k/M

Vdg′
k(xt)d

p→
f1(xt) as M → ∞, where g′k(xt) is the kNN distance of xt

in the anomalous training set X ′
M . Hence, we conclude with

log

k/M

Vdg′
k
(xt)

d

k/N

Vdgk(xt)
d

= d [log gk(xt)− log g′k(xt)] + log(N/M)
p→

log f1(xt)
f0(xt)

as M,N → ∞, where Lt = gk(xt) and L′
t =

g′k(xt) for s = γ = 1. �

It is also noteworthy that for challenging applications in
which the nominal and anomaly datasets are very similar, a

pre-processing step on the anomaly train set might be required
to remove the data points that are similar to the nominal train
set. This step is done by finding and removing the data points
of X ′

M which lie in the estimated most compact region of the
nominal train set, i.e.,

X clean
M = X ′

M \ {x′
m ∈ X ′

M : Lx′
m
≤ L(KN )}, (11)

where Lx′
m

is the total distance of x′
m with respect to the

nominal train set. If the cleaning process is performed on the
anomaly training set, L′

t in (9) is computed with respect to
X clean

M .

3.3. The Unified Framework

Availability of labeled training data is a major limiting factor
for improving the performance of anomaly detection tech-
niques. While obtaining comprehensive and accurate labeled
data for the anomaly class in several applications is very
difficult, in most applications typically sufficient amount of
labeled nominal data is available. Semi-supervised methods
including ODIT, constitute a popular class of anomaly de-
tection methods that build a model of normality only from
the nominal training data, and perform anomaly detection
by finding the data which deviates from this model. On the
other hand, supervised techniques including ODIT-2, require
both nominal and anomalous datasets to build models for
classifying data into nominal vs. anomaly classes. ODIT-
2 outperforms the semi-supervised ODIT method, for the
known anomaly types (as shown in Section 4). However,
ODIT-2, and in general supervised anomaly detectors, have
the drawback of achieving poor performance for detecting
unknown anomaly types. Whereas, ODIT, and in general
semi-supervised anomaly detection methods, are capable of
detecting any anomaly type as long as it sufficiently deviates
from the nominal model. This motivates us to combine the
desirable properties of ODIT and ODIT-2, and propose an
online learning scheme which is capable of detecting previ-
ously unseen anomalies and achieving better performance for
the known anomalies.

In the unified framework, both ODIT and ODIT-2 run in
parallel while a feedback loop includes the anomalous data
points first detected by ODIT in the anomaly training set of
ODIT-2 to empower the detection of similar anomaly types.
The unified scheme, called ODIT-uni, monitors the detection
statistics of ODIT and ODIT-2 in parallel, and stops the first
time either one stops:

Δ
(1)
t = max{Δ(1)

t +D
(1)
t , 0}, Δ(2)

t = max{Δ(2)
t +D

(2)
t , 0}

T = min{t : Δ(1)
t ≥ h1 or Δ(2)

t ≥ h2}, (12)

where D
(1)
t and D

(2)
t are the anomaly evidences given by (6)

and (9), respectively, and h1 and h2 are the predefined thresh-
olds of ODIT and ODIT-2. It is expected that for known
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Fig. 1: Performance comparison of ODIT, ODIT-2 and CUSUM in
the correlation monitoring example.

anomaly types, Δ
(2)
t ≥ h2 happens earlier. Whereas for

unseen anomaly types, Δ(1)
t ≥ h1 is expected to detect the

anomaly. If ODIT raises an alarm at time T , anomaly start
time τ̂ is estimated as the last time before T that ODIT statis-
tics was 0. Then, the feedback loop incorporates the data
instances between τ̂ and T into the anomaly train set. The
threshold h1 needs to be selected sufficiently large to prevent
false alarms by ODIT and consequently false inclusions of
detected data instances into ODIT-2 training set, although this
causes a higher detection delay of unseen anomalies.

4. NUMERICAL RESULTS

In this section, we first present numerical results to demon-
strate the advantage of multivariate analysis by ODIT and
ODIT-2 over the G-CUSUM detector in a challenging case
in which anomaly is defined as a change in the correlation
between individual data-streams, exemplified by the MadIoT
attacks in [16]. We simulate a 100-dimensional system in
which the nominal data is distributed according to a multi-
variate Gaussian distribution, with μ = 20 and a diagonal co-
variance with standard deviation being σ = 10. The anomaly
is defined as adding ρ = 0.6 correlation between 50% of the
data-streams, while the mean and standard deviation are in-
tact.

Fig. 1 compares the average performance of ODIT and
ODIT-2 with the oracle CUSUM which has the complete
knowledge of the underlying multivariate distributions. Since
it is not tractable to estimate the high-dimensional multi-
variate distributions, we consider a G-CUSUM that assumes
independence among individual data-streams and combines
the univariate analysis on each data-stream as in [17]. This
G-CUSUM fails to detect the anomalies in the correlation, as
expected. The ODIT methods successfully detect the change
in the covariance structure of observations by multivariate
analysis. ODIT-2 outperforms ODIT as expected, and well-
approximates the optimum CUSUM, which is not a practical
detector.

We also applied the proposed ODIT detectors to a real
dataset for network-based detection of IoT botnet attacks (N-
BaIoT dataset [18]) in order to compare ODIT detectors and
demonstrate the unified framework presented in Section 3.3.

0 0.5 1 1.5 2
0

1

(a) Performance comparison for the proposed ODIT detectors in the unknown
anomaly type scenario.

0 50 100 150 200
0

2

4

6

105

(b) Decision statistics of the proposed ODIT detectors in both scenarios
(known and unknown types of anomalies). Anomaly starts at t = 101.

Fig. 2: Experimental results on the N-BaIoT dataset.

This dataset is gathered from 9 IoT devices under nominal
operation and while infected by IoT-based botnets. The di-
mensionality of the data is 1035. We assume that we have
anomaly training data from past observations, where device 2
is acting maliciously. In order to fairly compare ODIT with
ODIT-2, we test for two different scenarios: 1) device 2 is
compromised (known anomaly type), 2) device 6 is compro-
mised (unknown anomaly type).

In case of the first scenario, both ODIT and ODIT-2 are
able to detect the anomaly with zero average detection de-
lay, i.e. instantaneously after the occurrence of anomaly. Fig.
2(a) compares the average performance of ODIT and ODIT-
2 for the second scenario. Although ODIT-2 is still able to
detect the anomaly, its performance degrades as compared to
the known anomaly scenario. This is due to the mismatch
between the type of anomaly in the observations and that of
the anomaly train set. Fig. 2(b) shows the decision statistics
of ODIT and ODIT-2 for both scenarios. Unlike the first sce-
nario in which the decision statistic of ODIT-2 is stronger than
that of the ODIT, in second scenario, the decision statistic of
ODIT-2 becomes weaker than that of ODIT.

We employed the unified framework ODIT-uni to demon-
strate the improvement of ODIT-2 performance for novel
anomaly types, as the anomaly train set grows by the in-
corporation of new anomaly observations. Following the
above experiment on N-BaIoT, we test for the performance
of ODIT-2 in detecting the new anomaly type (scenario 2).
Fig. 3 suggests that as the anomaly train set is enhanced by
the new data instances of unknown anomaly type, ODIT-2
performance for detecting future observations of the same
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anomaly type improves and converges to zero for sufficiently
enhanced training set.

0 100 200 300 400
0

0.1

Fig. 3: The average detection delay of ODIT-2 for an unknown
anomaly type, versus the number of the data instance of the unknown
anomaly added to the anomaly train set. The probability of false
alarm is set to be P (False Alarm) = 0.01

5. CONCLUSION

In this paper, we proposed a multivariate and online anomaly
detection framework that is suitable for real-time and high-
dimensional systems for both semi-supervised and supervised
settings. We showed the asymptotic optimality of the pro-
posed method in the minimax sense in terms of minimiz-
ing the average detection delay for a given false alarm con-
straint. The performance of the methods was evaluated in
the challenging case of detecting a change in the covariance
structure. Both ODIT and ODIT-2 successfully detect the
change while ODIT-2 achieves a close performance to the or-
acle CUSUM detector, which is the minimax optimum detec-
tor but not tractable in practice. We also provided experiment
results in the context of botnet detection on a real dataset (N-
BaIoT). Combining the advantages of the two methods, we
also proposed a unified ODIT scheme that can detect novel
anomaly types, as well as improve its performance over time
by enhancing its training set via the detected anomalous data
instances. The experiments on the N-BaIoT dataset corrobo-
rated that the unified scheme efficiently learns to quickly and
accurately detect similar anomalies in the future.
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