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Abstract—Tucker decomposition is a standard method for the
analysis of high-order tensor data. Standard Tucker decomposi-
tion generalizes singular-value decomposition and is formulated
as minimization of the L2-norm of the low-rank approxima-
tion error. Due to the quadratic emphasis on peripheral data,
the L2-norm based formulation of Tucker has been shown to
be sensitive against corruptions. L1-norm-based variants (L1-
Tucker) are proposed as robust Tucker decomposition methods,
and are formulated as subspace estimators by absolute-projection
maximization, and have proven effective in outlier resistant
subspace computation. However, Tucker decomposition for robust
low-rank tensor approximation is not defined/optimized in the
literature. In this work, we propose a new formulation for
low-rank tensor approximation, with tunable outlier-robustness,
and present a unified algorithmic solution framework. This
formulation relies on a new generalized robust loss function (Bar-
ron loss), which encompasses several well-known loss-functions
with variable outlier-resistance. The robustness of the proposed
framework is corroborated by the presented numerical studies
on synthetic and real data.

I. INTRODUCTION

Across a variety of applications, datasets are multimodal
or multi-way and naturally modeled as high-order tensors
(e.g., hyper-spectral imagery, video, network/graph relation
arrays) [1]–[8]. At the same time, real-world data often contain
sporadic highly deviating points (faulty entries) due to errors in
data collection/storage or even adversarial data contamination.
At the same time, “good data” are of paramount importance
in machine learning, especially in applications that cannot
afford “big data” (where faulty entries can average out) and
performance reliability is most critical, such as medicine and
defense [9]. Based on the above, there is a need for robust
analysis and refinement of tensor data before providing them
as input to machine learning systems.

Tucker decomposition (TD) is a standard method for analy-
sis, compression, and low-rank restoration of tensor data [10],
[11]. Standard TD is the high-order extension of singular-
value decomposition (SVD) and strives to minimize the L2-
norm of the low-rank approximation error. Due to its reliance
on the L2-norm (sum of squared entries), which benefits
peripheral entries, TD is known to be sensitive against outlier
contamination of the processed tensor [12], [13]. Higher Order
Singular Value Decomposition (HOSVD), and Higher Order
Orthogonal Iterations (HOOI), are two common solvers for
standard TD. L1-norm-based variants (such as L1-Tucker [13])
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have been proposed in the literature, formulated as subspace
estimators based on absolute-projection maximization. Indeed,
these methods exhibit strong outlier resistance in the computa-
tion of the multilinear data subspaces [13]–[15], but have not
been defined/optimized for low-rank tensor approximation.

In this work we propose a new TD formulation, particularly
designed for outlier-resistant low-rank tensor approximation.
Our formulation relies on a new generalized robust loss
function, recently presented in [16]. To solve the proposed
TD problem, for any configuration of loss parameters, we
develop a novel algorithmic framework, with a particular focus
on computational efficiency and ability to handle larger data.
Our numerical studies corroborate the outstanding robustness
of the proposed framework.

II. BACKGROUND

A. Tensors and Tucker Decomposition

Tensors are a high-order generalization of vectors and
matrices. Each entry of an N -way tensor X ∈ RD1×D2···×DN

is identified by N indices. Groups of entries of a tensor X
that can be addressed by the same N − 1 fixed indices are
referred to as “fibers” –e.g., vector [X ]:,i2,...,iN is one of the
D2 · · ·DN mode-1 fibers of X . X can be “flattened” into
a matrix X (n) the columns of which are the mode-n fibers
of X . Operator ×n denotes a mode-n tensor-matrix product
so that [X ×n A](n) = AX (n). [N ] = {1, 2, . . . , N} and
X×n∈[N ]An = X×1A1×2 · · ·×NAN is a multi-way tensor-
matrix product (invariant to the order of mode products).
A ⊗B ∈ Rpk×rq denotes the Kronecker product of matrices
A ∈ Rp×q and B ∈ Rk×r.

Given low ranks d1, d2, . . . , dN , TD approximates a
tensor X ∈ RD1×D2···×DN by X̂ ≈ G ×n∈[N ] Un;
G ∈ Rd1×d2···×dN is the “core” of the decomposition and
{Ui}i∈[N ] ∈ S(Di, di) are the “factor matrices” (or bases). In
standard TD,

(
G, {Un}n∈[N ]

)
are jointly chosen to minimize

the L2-norm approximation error ∥X − G ×n∈[N ] Un∥2F . In
some applications, core and factor matrices are rotated (with
invariant approximation metric) so that {Un}n∈[N ] constitute
orthonormal bases of the multi-linear subspaces captured by
X̂ . Hence, L2-norm error-minimization formulation of stan-
dard TD is equivalent to maximization of the L2-norm tensor
projection, as

max.
{Ui∈S(Di,di)}i∈[N]

∥∥∥X ×i∈[N ] U
⊤
i

∥∥∥2
F
. (1)
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Fig. 1: Generalized loss function, for different values of
robustness parameter α [16].

HOOI, and HOSVD are two approximate solvers of (1).
HOSVD, disjointly computes each Ui as the leading left
singular vectors of X(n). HOOI, is an iterative method, that
jointly updates each Un by the leading left singular vectors
of [X×i ̸=n U⊤

i ](n), until convergence. Both algorithms have
exhibited success in low-rank approximation in absence of
sparse corruptions, with HOOI being superior to HOSVD,
due to joint computation of factor matrices. However, due to
the squared emphasis on the peripheral entries of the data, in
the presence of outlying tensor entries/fibers/slabs, L2-norm-
based solvers favor the outlying entries over the nominal ones.
L1-norm-based variants are proposed for subspace estimation,
formulated as seeking orthonormal subspaces identified by
{Un}n∈[N ] on which the L1-norm of the projection of X is
maximized. L1-HOSVD, and L1-HOOI are two robust solvers
of this formulation, and have shown documented success
in robust subspace estimation. Nevertheless, the problem of
robust low-rank Tucker tensor approximation needs further
exploration.

B. Generalized Robust Loss

For given error e between a desired and an approximated
quantity, Barron in [16] proposed the loss function

L(e; α, c) =
α− 2

α

((
(e/c)2

|α− 2|
+ 1

)α/2
)
. (2)

In (2), α is a shape parameter that controls the robustness
and c > 0 is a scale parameter that tunes the size of the
quadratic bowl of L(e, α, c) near e = 0. This two-parameter
loss function generalizes various standard loss functions such
as the Cauchy (α = 0), Welsch (α→ −∞), Geman-McClure
(α = −2), Charbonnier/pseudo-Huber/L1-L2 (α = 1), and
L2 (α → 2), as shown in Fig. 1. Clearly, tuning α to values
lower than 2, the loss introduces increasing robustness against
high error values. Based on its smoothness (appropriate for
gradient-descent-type optimization) and its flexibility, Barron
loss function in (2) has already found use in many machine
learning applications [17] since first introduced in 2019 [16].
In this work, we employ this loss function for the first time
for the formulation of a robust TD, as shown below.

Algorithm 1. Proposed algorithm.
Input: Data X ∈ RD1×D2×···×DN and target low-ranks {dn}n∈[N ].

1: Initialize Un, ∀n.
2: for n = 1, 2, . . . , N :
3: Un ← solve convex problem in (5).
4: G ← solve equation (6).

Return: X̂ , {Ûn}n∈[N ], and Ĝ.
Fig. 2: Pseudocode of proposed algorithm.

III. PROPOSED FORMULATION AND ALGORITHM

Consider an N -way data tensor X ∈ RD1×D2×···×DN .
Using the Barron loss, we formulate the proposed TD

min
G,{Un}n∈[N]

F (G, {Un}n∈[N ]; X , a, c), (3)

F (G, {Un}n∈[N ]; X , a, c) =∑D1

i1=1 . . .
∑DN

iN=1 L([X − G ×i∈[N ] Ui]i1,...,iN ; a, c).
(4)

In this work we are mostly interested in robust versions of
(3) for α < 2. Nonetheless, we present a complete algorith-
mic framework for solving (3), for any (α, c) configuration.
These parameters can be tuned by the user, per application,
considering the robustness/accuracy ratio of tuning α and c.

To solve (3), we develop a Block Coordinate Descent (BCD)
approach, partitioning the problem into smaller convex sub-
problems which we solve iteratively. Each sub-problem is
defined by fixing all the block-variables in

(
G, {Ui}i∈[N ]

)
except for the one that we want to optimize. For instance, to
optimize Un, we define An = UN ⊗ · · ·Un+1⊗Un−1 · · · ⊗
U1 ∈ RJn×jn , where Jn =

∏
m̸=n Dm and jn =

∏
m̸=n dm,

and solve the convex problem

Un ← min
U

Jn∑
j=1

Dn∑
d=1

L([X (n) −UG(n)A
T
n ]d,j ; a, c). (5)

Then, after each basis update, we define the fixed Ũ = UN ⊗
· · · ⊗U1 and optimize the core as

G ← min
G

D1···DN∑
d=1

L([X (N+1) − G(N+1)Ũ
T
]d; a, c). (6)

Upon termination of the BCD iterations, the algorithm
returns estimates (Ĝ, {Ûi}i∈[N ]) and X = Ĝ×n∈[N ] Ûn. The
outline of the BCD algorithm is shown in Fig. 2.

The problems in (5) and (6) are regression-type problems in
terms of the Barron loss and can be solved by an array of stan-
dard solvers, including gradient descent. In the experiments
of this paper, gradient descent optimization is adopted for
optimizing (5) and (6). Gradient of the loss in (5) is computed
by

∂F

∂Un
= Y(n)AnG⊤

(n) = [Y ×i ̸=n U⊤
i ](n)G

⊤
(n), (7)

where Y is the derivative of the entrywise loss function with
respect to the residual error of the low-rank approximation.
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In other words, [Y(n)]d,j =
∂L
∂e ([X (n)−UG(n)A

T
n ]d,j ; a, c).

Similarly, the gradient of the loss in (6) is

∂F

∂G = Y ×i∈[N ] U
⊤
i . (8)

Handling missing data: With the proposed formula-
tion/framework we can easily handle low-rank approximation
in the presence of missing data. To that end, we rewrite the
loss function at (4), as

F (G, {Un}n∈[N ];X , a, c) =∑D1

i1=1 . . .
∑DN

iN=1 L([W ◦ (X − G ×i∈[N ] Ui)]i1,...,iN ; a, c),
(9)

where W is an indicator tensor, such that [W ]i1,...,iN = 1
if [X ]i1,...,iN is not missing, and 0 otherwise. The gradient
calculations, must account for the W , accordingly.

IV. NUMERICAL STUDIES

A. Synthetic data

To demonstrate the effectiveness of the proposed TD for-
mulation and the proposed algorithm against high levels of
outlier corruption, we conducted a numerical experiment on
a synthetic data. We set N = 3, D1 = D2 = D3 = 10,
d1 = d2 = d3 = 3, and generated low-rank nominal
tensor X = G ×n∈[3] Un, where the entries of G are
drawn independently from a zero-mean Gaussian distribution
with standard deviation 3, and arbitrary orthonormal factor
matrices. We corrupt the low-rank tensor by adding i.i.d.
Gaussian noise drawn from N (0, 12), to all entries. Then,
we additively corrupt No = 50 arbitrary entries of the tensor
(frequency of corruption occurrence is 5% ) by adding non-
zero outlying values drawn independently from N (0, σ2

o). We
estimate the nominal low-rank tensor by TD on the cor-
rupted tensor X CORR, implemented by means of the proposed
formulation/algorithm (X̂ PROP), as well as standard HOOI
(X̂HOOI) and HOSVD (X̂HOSVD). The tensor reconstruction
performance for each estimate X̂ is then measured by the
Mean Normalized Squared Error (MNSE)

MNSE = ∥X̂ −X∥2F ∥X∥−2
F . (10)

Intensity of corruption with respect to the added noise is
quantified by the Outlier-to-Noise Ratio (ONR)

ONR =
E{∥O∥2F }
E{∥N ∥2F }

=
No∏

n∈[N ] Dn

σ2
o

σ2
n

. (11)

In this experiments the outlier standard deviation σo is set
to 0, 2, . . . , 16. Fig. 3 shows the performance curve of MNSE
vs. ONR over 1000 realizations of noise/outliers. The scale
parameter of the proposed TD’s loss function is set to 1 (c =
1), and the proposed formulation/algorithm’s performance is
shown for α = 0, 1, 2. For ONR ≤ 0.2 (corresponding to σo ≤
2), all algorithms show minuscule error in low-rank tensor
restoration. With the increase in corruption intensity, HOOI,
and HOSVD, and TD with a shape parameter α = 2 quickly
break down. On the contrary, the two robust configurations of
the TD maintain robustness across the board. For ONR > 1,

TD with α = 0 outperforms TD with shape parameter α = 1,
and attains the smallest approximation error among all, for
every ONR value.
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Fig. 3: Performance comparison of three configurations of the
proposed method versus standard solvers (HOSVD, HOOI) of
the L2-norm TD formulation, for No = 50.

B. Real data: Uber Pickup dataset

In this experiment, we perform a similar performance evalu-
ation on ”Uber Pickups” dataset [18], which is a 4-way tensor
of size 183 × 24 × 1140 × 1717. The (i, j, k, l)-th entry of
this tensor represents the number of total Uber pickups in j-
th hour of day i, in a location identified by k-th longitude,
and l-th latitude coordinates, within New York city. In this
experiment, we reduced the original tensor to a 3-way tensor
X ∈ R125×125×14, by aggregating over the 24 hours of
the first 14 days, and summing over the coordinate blocks.
The first two modes of the obtained tensor represent location
coordinates, and the third mode represent days.

In this study, the clean tensor is additively corrupted as
Xcorr = X +O, where O is a random outlier tensor, in which
β = 20% of the entries within a single arbitrarily chosen slab
are random positive integers drawn from a unif(v/10,v), and
the rest of the entries are 0. We decompose the tensor along the
first two modes, while fixing the third mode (sample mode) at
U3 = I125×125, and obtain the approximation tensors X̂ PROP,
X̂HOOI, and X̂HOSVD.

For the purpose of visual illustration, two sample 125×125
tensor slabs X :,:,iclean , and X :,:,icorr , at a single realization of
the above experiment are visualized in Figure 6. After tensor
decomposition/restoration, the restored corrupted slabs of the
proposed (for α = 0), HOOI, and HOSVD algorithms are
shown respectively in 4b, 4c, 4d. Corruption-free slabs of the
X̂HOSVD, X̂HOOI, and X̂ PROP (α = 0) are shown respectively
in Fig. 5a, 5b, 5c. The figures exhibit the HOSVD, and
HOOI’s poor performance in restoring the original entries of
both corrupted and non-corrupted slabs. In contrast to the
L2-norm-based methods, the proposed algorithm for α = 0,
demonstrates robustness and outlier suppression.
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(a) (b) HOSVD (c) HOOI (d) Proposed (α = 0)

Fig. 4: Corrupted frontal slab of the tensor, and the corresponding approximated slab by the three algorithms, for rank
d1 = d2 = 6, d3 = 14 TD; (a) the corrupted outlying slab.

(a) (b) HOSVD (c) HOOI (d) Proposed (α = 0)

Fig. 5: A clean frontal slab of the tensor, and the corresponding approximated slab by the three algorithms, for rank d1 = d2 = 6,
d3 = 14 TD; (a) the clean slab.

In Fig. 6 we plot the performance curve of MNSE vs.
v, for 0 ≤ v ≤ 500, over 100 realizations of outliers, for
the competing algorithms. The figure demonstrates that, as
corruption magnitude increases, the HOSVD, and HOOI break
down quickly, while the robust configuration of the proposed
algorithm exhibits outstanding outlier resistance even for very
high corruption levels.
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Fig. 6: Performance comparison of three configurations of the
proposed method vs. standard solvers (HOSVD, HOOI) of the
L2-norm TD formulation ”Uber Pickups” dataset.

V. CONCLUSION

In this work we proposed a new formulation for low-
rank tensor approximation, based on a generalized robust loss
function, and developed for it a novel algorithmic framework.
The new loss function allows for tunable robustness of the
Tucker decomposition while it can also handle the missing
data. Additionally, the smoothness and differentiability of the
loss function allows for gradient-descent-type optimization.
Our numerical studies on synthetic and real data corroborate
the robustness of the proposed formulation/algorithm.
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