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Abstract

Deep learning models with large-scale backbones have been
increasingly adopted to tackle complex visual question an-
swering (VQA) problems in real settings. While providing
powerful learning capacities to handle the high-dimensional
and multimodal VQA data, these models tend to suffer
from the memorization effect leading to overconfident pre-
dictions. This can significantly limit their applicability in
critical domains (e.g., medicine, cyber-security, and public
safety), where confidently wrong predictions may lead to se-
vere consequences. In this work, we propose to perform novel
low-rank network factorization, resulting in much better-
calibrated networks. These low-rank factorized networks are
then aggregated into an ensemble guided by a generalized fo-
cal loss to further improve the overall performance and cali-
bration. The overall framework, referred to as the Generalized
focal Loss Ensemble of low-rank Networks (GLEN), is an im-
portant step toward developing well-calibrated VQA models.
We theoretically demonstrate that the generalized focal loss
provides a more balanced bias-variance trade-off, which guar-
antees to lower the confidence of the incorrect predictions,
resulting in improved calibration. Extensive experimentation
conducted on benchmark datasets and comparison on vari-
ous VQA models shows that GLEN leads to much better cal-
ibration over both in-distribution and out-of-distribution data
without sacrificing the VQA accuracy.

1 Introduction
Visual Question Answering (VQA) (Antol et al. 2015) has
drawn significant attention due to its wide applicability in
challenging real-world problems from diverse domains. De-
spite its wide applicability, VQA is inherently a challenging
problem as it requires complex and common sense reason-
ing from multimodal data constituting images and natural
language questions. To tackle the complex VQA problem,
various methodologies have been developed (Schwenk et al.
2022; Lin et al. 2022; Gao et al. 2022; Qian et al. 2022;
Vosoughi et al. 2023). However, most existing techniques
are centered on enhancing VQA accuracy, without paying
attention to the calibration of the model. Thus, these mod-
els are more likely to produce confidently wrong predictions
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Q: How many people are sitting on 
the bench? 
GT A: 3

Pythia      A: 2 ✘     Confidence: 0.98
ViLBERT   A: 2 ✘     Confidence: 1.0

Q: Does this look like nice weather 
for a day at the beach?
GT A: No

Pythia      A: Yes ✘  Confidence: 0.98
ViLBERT   A: Yes ✘  Confidence: 0.92 

Figure 1: Illustration of over-confidence in VQA models:
Pythia (Jiang et al. 2018) and ViLBERT (Lu et al. 2019)
models, exhibiting incorrect answers with high confidence.

due to the overfitting phenomenon stemming from the mem-
orization effect of over-parametrized models. This issue un-
dermines the reliability for VQA models, and negatively im-
pacts user trust. For example as illustrated in Figure 1 both
Pythia (Jiang et al. 2018) and ViLBERT (Lu et al. 2019)
VQA models produce wrong predictions with a high confi-
dence. As further demonstrated in Figures 2a, 2b, both mod-
els suffer from a poor calibration performance, despite hav-
ing a decent VQA accuracy. Additionally, a better VQA ac-
curacy does not necessarily ensure a better calibration. Such
poor calibration behavior can severely limit the applicability
of these VQA models in critical domains.

Some preliminary efforts have been devoted to achieving
calibrated VQA model training. For example, (Whitehead
et al. 2022; Dancette et al. 2023) introduces a trainable add-
on component to a frozen VQA model, to estimate the confi-
dence score associated with the VQA model’s answer. They
formulate VQA as a selective prediction problem, and the
proposed techniques abstain from answering a question if
the estimated confidence score by the selector falls below a
threshold. However, there are two key limitations. First the
training of the add-on selector depends on the VQA model,
which may already be poorly calibrated, making the selec-
tor sub-optimal. Second, the selector needs to be trained on a
standalone validation dataset, which significantly increases
the annotation cost. As a result, those techniques still exhibit
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(c) Pythia + Selector
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(d) ViLBERT + Selector
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(e) Factorized Early Layers
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(f) Factorized Final Layer
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(g) Ensemble of 3 LRF VQAs
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(h) Ours: GLEN

Figure 2: (a)-(b) The Expected Calibration Error (ECE) plots for Pythia and ViLBERT, indicating a high calibration error,
despite a decent accuracy; (c)-(d) ECE plots of the Pythia and ViLBERT after applying a post-hoc calibration technique,
Selector (Whitehead et al. 2022); (e)-(f) Comparison between varying effects of employing low-rank factorization to layers
at different depths in Pythia (Jiang et al. 2018); Performance Comparison between (g) ensembling of low-rank final layer
factorization of uniformly trained VQA models as in (f), and (h) our proposed GLEN.

poor calibration as shown in Figures 2c, 2d.

To address the poor calibration phenomenon of existing
VQA models, one viable solution is to reduce the overall ca-
pacity of the overparameterized architecture by compressing
the model weights through low-rank matrix/tensor factor-
ization. However, compressing a complex deep architecture
without care can hinder the model’s representation ability
leading to a poor prediction performance. This is because
different layers in the network may play distinct roles in the
learning process. Existing empirical observations and the-
oretical evidence suggest that earlier layers are responsible
for learning general features and later ones focus on learning
task-specific features, which may include noises resulting
from spurious correlations or other sources (Kornblith et al.
2019; Yosinski et al. 2014; Allen-Zhu and Li 2022). These
insights imply the potential to improve the calibration with-
out compromising the predictive performance by keeping
earlier layers dense while compressing the later layers that
are primarily responsible for the overfitting phenomenon.
This can be validated empirically as shown in Figures 2e,
2f wherein compression of the earlier layers leads to signifi-
cant degradation of the model performance as it hinders the
feature learning capability of the VQA model. In contrast,
the compression of the final layer effectively enhances the
calibration without causing much accuracy degradation.

To compensate the potential loss of modeling capabil-
ity of the low-rank factorized (LRF) networks, one promis-
ing direction is to augment them using the deep-ensemble
techniques with theoretically justified performance improve-
ment (Allen-Zhu and Li 2023). As shown in Figure 2g,
building an ensemble of three LRF VQA models shows an
improved accuracy. Nevertheless, the overall ECE score is
only improved by 2% and the ensemble still exhibits se-
vere overfitting. For example, when the predicted confidence

reaches over 80%, the accuracy is still lower than 70%. This
issue arises because individual VQA models, trained in a
similar manner from the same data distribution, lack diver-
sity and exhibit strong correlations. As such, the ensemble
potentially inherits the behavior (e.g. poor calibration) of in-
dividual VQA models. Therefore, it is important to ensure
diversity among the individual models so that they can ef-
fectively complement each other during the ensemble phase.

Inspired by the above observations, in this paper, we
propose a Generalized Focal Loss Ensemble of Low-Rank
Networks (GLEN) framework which aims to produce well-
calibrated VQA models without compromising the predic-
tion performance. To achieve better calibration, we leverage
the idea of generalized focal loss (GFL) that helps to diver-
sify the LRF networks. GFL allows the learning of the LRF
networks through different parts of data with distinct levels
of difficulty and therefore enhances the diversity. Figure 3
shows that by coupling the training of LRF with the GFL, it
leads to three networks (shown in dashed red) with diverse
calibration behaviors. In contrast, without the GFL, the three
LRF-Vanilla models (shown in dashed blue) are largely sim-
ilar to each other. As a result, the GFL ensemble (shown in
solid red) is able to achieve a better calibrated model than
the standard ensemble (shown in solid blue): at the same ac-
curacy, GLEN obtains a lower ECE score than the standard
ensemble. This can be further confirmed by comparing Fig-
ures 2g and 2h. Our main contribution is fourfold:

• low-rank factorization on the later layers of the VQA net-
work for improved calibration without hurting the feature
representation capability.

• a generalized focal loss-based ensemble framework that
combines multiple LRF networks that are diverse and
complementary to each other to enhance the calibration.

• theoretical justification of the proposed technique by
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Figure 3: Effect of LRF with varying compression ratio. As
the final layer of a VQA model gets more compact, ECE im-
proves at the cost of slight accuracy degradation. Our tech-
nique consistently achieves a lower ECE at any accuracy
level, as compared to adopting LRF on the original mod-
els with/without ensembling. This corroborates the effec-
tiveness of the LRF combined with the GFL ensemble.

showing how the proposed generalized focal loss is
equivalent to a bias-variance trade-off loss to guarantee
the reduction of confidently wrong predictions.

• extensive experimentation to assess the effectiveness of
the proposed technique in terms of in-domain and out-of-
domain performance in VQA tasks.

2 Related Work
We give an overview of existing works most relevant to ours.
Additional related works are covered in the Appendix.

Calibration in VQA models. The concept of reliable
VQA is introduced by (Whitehead et al. 2022), which ap-
proaches it as a selective prediction problem. An add-on
selection mechanism is leveraged to determine whether the
model should provide an answer or abstain and the selection
decision is based on the estimated confidence score. The se-
lector component is trained separately from the main VQA
model, which requires a good amount of labeled data. To
address this, a training strategy is developed that trains both
the VQA model and the selector on the same training dataset
(Dancette et al. 2023). This is achieved by employing a dis-
tributed way for training the selector from N independent
VQA models, each trained on N−1 splits. While these tech-
niques help to improve the prediction reliability by abstain-
ing from answering questions with low confidence, they do
not fundamentally address the overfitting behavior of exist-
ing VQA models, which is the focus of the proposed work.
Fig. 2 shows the selector still suffers from poor calibration.

Focal Loss and related models. Focal loss introduced by
(Lin et al. 2017), is originally developed for object detection
to address the class imbalance problem between the fore-
ground and background. Later, (Mukhoti et al. 2020) explore
its impact on the calibration of neural networks trained for
classification. They demonstrate that focal loss enhances the
calibration of neural networks, by having a regularization ef-
fect on the weights. AdaFocal (Ghosh, Schaaf, and Gormley
2022) emerges as a calibration-aware variant of focal loss,
designed to dynamically adjust its hyperparameter for dif-
ferent sample groups. GFL (Li et al. 2020) extends the focal
loss to the real-valued labels for object detection. In the do-

main of VQA, focal loss has been leveraged to tackle the
dataset bias. For instance (Lao et al. 2021) utilized a focal
loss to overcome language biases in VQA, implementing a
strategy that reweights predictions made by a language-only
branch. Our work proposes a generalized focal loss and then
leverages it in a novel way to form a diverse ensemble of
LRF networks for improved VQA calibration.

3 Methodology
Metrics for model calibration assessment. Let DN =
{(v1,q1,a1), .., (vN ,qN ,aN )} represent a dataset of N
samples, where each input pair (vn ∈ V , qn ∈ Q) involves
an image vn and a question qn and corresponding answer,
denoted by an ∈ A, indicates the respective annotation. Fur-
ther, we define X ≡ V ×Q to denote the input data space.

Unlike traditional classification problems, in the context
of VQA, multiple ground-truth answers per image-question
pair are available as multiple annotators annotate the same
question. Thus, for each VQA task, the accuracy (ACC)
could take a value in [0, 1]. Besides accuracy, Expected Cali-
bration Error (ECE) (Naeini, Cooper, and Hauskrecht 2015)
is commonly used to assess the calibration error between
the estimated confidences and the actual accuracies. In
many applications including the VQA task, over-confident
wrong predictions directly impact the reliability of the VQA
model and have a higher misleading effect, than under-
confident correct predictions. Hence, it is crucial to reduce
the overconfident prediction. Specifically, Over-Confidence
(OC) metric (Mund, Triebel, and Cremers 2015), focuses on
measuring the miscalibration within the wrong predictions:
OC = E[p̂|ŷ ̸= y]. There exists a trade-off between how
often answers are abstained from, and the answer prediction
error. The Risk-Coverage metric assesses this balance. Risk
represents the average error on answered questions, while
coverage measures the proportion of questions answered by
the selective model. Given a desired risk threshold level R,
the risk-coverage denoted by C@R quantifies the maximum
coverage achieved by the model while ensuring a minimum
accuracy of (1 − R) for answered questions, with higher C
values being preferable. In critical applications, C@R for
lower risk threshold levels might be more critical to achieve.
However, the overall selective prediction is summarized by
AUC, which computes the total area under the C@R curve.
A comprehensive list of notations and further details on the
above metrics are provided in the Appendix.

3.1 Overview of the Framework
Figure 4 shows the overall workflow of the GLEN frame-
work, which consists of three key stages: 1) In the training
stage, a diverse set of VQA models are trained with focal
loss; 2) In the factorization stage, the final classification lay-
ers of the VQA models are factorized into a low-rank form;
3) Finally, in the ensembling stage, the low-rank VQA mod-
els are ensembled by aggregating their outputs.

3.2 Low-Rank Network Factorization
Overparameterization in neural networks is a well-
recognized phenomenon that can benefit neural networks in
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Figure 4: The overall workflow of generalized focal loss ensemble of low-rank networks

learning complex feature representation and capturing intri-
cate features within data. The features captured at different
depth levels vary in task-specificity, with the later layers
learning task-specific and earlier layers capturing general
features. Hence, to mitigate the poor calibration and over-
confidence issue arising from an overparameterized archi-
tecture, we propose to conduct low-rank factorization on the
final network layer, which not only reduces the model ca-
pacity at the final layer but also compresses the task-specific
feature representations into a more compact form.

Specifically, we represent the final layer’s weights by a
low-rank weight matrix, effectively approximating the func-
tion performed by the layer. Assume that the weight ma-
trix of the final layer is represented by W ∈ RM×C , which
maps the penultimate representations z ∈ RM learned by
the earlier layers, to probabilities across C classes, as p =
σ(W⊤z + b), where b ∈ RC , and σ(.) respectively repre-
sent the layer bias, and the softmax function. Through low-
rank factorization, the weight matrix W is approximated as
W ≈ UV, where U ∈ RM×R, V ∈ RR×C , and R is
the factorization rank. The layers within the neural networks
typically exhibit a low-rank structure (Denton et al. 2014),
which allows for approximating the weights with a factoriza-
tion rank R, much smaller than M and C. The approximated
function of the final layer is represented by

p = σ(V⊤s+ b), s = U⊤z. (1)
The functions represented in eq. (1) are effectively equiv-

alent to two consecutive linear layers followed by a Soft-
max activation function, with the output space of the for-
mer layer being s ∈ RR. Figure 5 visualizes the proposed
low-rank network factorization. In this way, the original final
layer’s effective number of parameters reduces from MC to
R(M + C) parameters (excluding the bias term). Addition-
ally, an implicit dimensionality reduction occurs at the task-
specific features, accomplished by the new layers mapping
the M -dimensional features z to an R-dimensional feature
space by eq. (1), and subsequently mapping these intermedi-
ate R-dimensional features to output probabilities. The low
approximation error between the original weight matrix and
its low-rank form ensures that the model’s predictive capa-
bilities are mostly preserved.

We conduct empirical studies to verify the positive ef-
fects of applying low-rank factorization to the final layer
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Figure 5: Low-rank factorization of the final layer

on the calibration of the VQA models. The technique is
applied to four VQA models, namely, Pythia (Jiang et al.
2018), ViLBERT (Lu et al. 2019), VisualBERT (Li et al.
2019), and CLIP-ViL (Shen et al. 2021) with various factor-
ization ranks. In particular, Figures 6a, 6b present the post-
factorization performances in terms of the ECE and VQA
accuracy, respectively, as a function of the ratio between
layer parameter sizes, pre and post low-rank factorization
stage. It’s important to note that while approximating layer
weights leads to some information loss, potentially impact-
ing the accuracy of the model, our results highlight a promis-
ing trade-off: a slight drop in VQA accuracy, with an evi-
dent improvement in ECE, when compressing up to a certain
ratio. Further empirical evidence, provided in Appendix F
(Mozaffari, Sapkota, and Yu 2024), highlights the effective-
ness of the final layer low-rank factorization on calibration
and underscores the superiority of applying low-rank factor-
ization to the final layer rather than to intermediate layers, in
terms of the balance between VQA accuracy and ECE.

3.3 Generalized Focal Loss Ensemble
Performing low-rank network factorization helps to improve
the calibration performance at the cost of slight degradation
in the accuracy. In order to compensate this accuracy drop,
we propose to construct an ensemble of the well-calibrated
VQA models. Our empirical result (see Figure 3) shows that
for individual VQA models trained in a similar manner from
the same data distribution, they exhibit strong correlations.
As such, the ensemble may inherit the limitation (i.e. poor
calibration) of individual VQA models.

Therefore, it is crucial to ensure the diversity among the
LRF networks in the ensemble model. We hypothesize that
by enforcing the LRF networks to be trained through dif-
ferent data distributions, sufficient diversity can be achieved
among different networks, making them complementary to
each other during the ensemble process.



0 20 40
Param. Reduction (%)

0.1

0.2
EC

E
Pythia
ViLBERT

VisualBERT
CLIP-ViL

(a)

0 20 40
Param. Reduction (%)

65.0

70.0

Ac
cu

ra
cy

 (%
)

Acc: -1.5%
 ECE: -0.1

Acc: -1.19%
 ECE: -0.12

Acc: -2.75%
 ECE: -0.1

Acc: -0.68%
 ECE: -0.03

(b)

Figure 6: ECE (6a) and VQA accuracy (6b) with respect
to the final layer’s parameter reduction ratio through low-
rank factorization. The 0% reduction ratio corresponds to
the performances of the original VQA models. As factor-
ization rank decreases, the parameter size reduction ratio on
the x-axis increases. In all models, lower factorization rank
inflicts a small degradation in the VQA Accuracy while im-
proving the ECE.

To achieve this, we propose a unique ensemble technique
where each LRF network is trained using the generalized fo-
cal loss. Specifically, let l(xn,Θ) be the loss associated with
the nth data sample from the LRF network parameterized
by Θ. Considering pny being the output probability for the
correct class yn, the standard focal loss can be expressed as:

L(Θ)SFL =

N∑
n=1

(1− pny )
γ l(xn,Θ), (2)

where γ controls the extent to which we want to give em-
phasis to the difficult samples. Depending on the γ value,
the above expression instantiates different LRF networks.
For instance, with γ → 0, the above focal loss reduces to
standard Expected Risk Minimization (ERM) loss. As such,
the LRF network is trained by assigning equal weights to all
samples. In this case, the model learns from the original data
distribution. Further, with γ → ∞, the above expression re-
duces to the maximum based loss where the LRF network
focuses on the most difficult data sample and becomes un-
stable because it may attempt to learn from the noise. While
the standard focal loss allows the LRF networks to focus on
different data distributions depending on hyperparameter γ,
the above expression lacks the statistical property to strictly
justify the above phenomenon. Additionally, the exact inter-
pretation of hyperparameter γ is not well understood. It also
has a specific form and lacks the representation ability of
different types of functions.

To overcome these shortcomings, we extend the focal loss
to a general form:

L(Θ)GFL =

N∑
n=1

wnl(xn,Θ), (3)

where wn indicates how much emphasis we want to impose
on the nth data points. It should be noted that depending
on the weight distribution w, the generalized focal loss puts
emphasis on the difficult data samples. For example, by as-
signing equal weight on samples: wn = 1

N ;∀n ∈ [N ], the
above focal loss reduces to putting equal emphasis on all
data samples. In another extreme, by putting all weights to
the sample with the highest loss, the above loss reduces to
maximum based loss. Therefore, we would need a set that

can define a distribution that can put an emphasis on diffi-
cult samples but to a different extent. Specifically, we define
the following set for the weight distribution

WN :=

{
w ∈ Rn,w⊤

1 = 1, 0 ≤ w, Df

(
w|| 1

N

)
≤ λ

N

}
(4)

where Df is the f-divergence metric measuring the distance
between w and the uniform distribution. Based on the above
constraint, we can find the optimal weight distribution w∗

that maximizes the generalized focal loss. In this case, we
perform the maximization in the generalized focal loss so
that the model is forced to find the optimal weight w∗ under
the constraint set WN that can favor more difficult samples
by assigning higher weights. It should be noted that depend-
ing on the hyperparameter λ, our generalized focal loss can
be reduced to the ERM loss (with λ → 0) as well as max-
imum loss (with λ → ∞). Therefore, by changing λ, we
can systematically change the distribution over w to control
the emphasis on difficult samples. Also, it is worth mention-
ing that, inspired by the work (Namkoong and Duchi 2017),
the above generalized focal loss can also be expressed in
terms of bias-variance trade-off loss which ensures the min-
imization of overconfident wrong predictions without reduc-
ing the prediction score for the correct cases. More formally,
we present the following theorem:
Theorem 1 Let X be a random variable representing a
data sample, σ2 = Var[f(X)] and VarN [f(X)] denote
the population and sample variance of f(X), respectively,
and Df takes the form of χ2-divergence. Let |l(xn,Θ) −
1
N

∑N
i=1 l(xi,Θ)| ≤ K be the the upper bound of the abso-

lute difference between data sample loss and average (ERM)
loss. Then, under low-rank network factorization, with prob-
ability at least 1 − exp

(
−Nt2

2K2

)
, the generalized focal loss

in eq. (3) can be represented by the bias-variance trade-off
loss under the distribution set defined in eq. (4):

L(Θ)GFL =
1

N

N∑
1

l(xn,Θ) + C

√
VarN [l(X,Θ)]

N
, (5)

where t =
(
1−

√
3
8

)
σ.

Remark. Because of the special design of our LRF net-
works, the equivalence between GFL and bias-variance
trade-off loss is ensured with a high probability. This is be-
cause in the expression 1 − exp

(
−Nt2

2K2

)
, K indicates that

the bound for the loss becomes small as the model restricts
the output making the individual losses not deviate far from
the average loss. As such, the probability of equivalence be-
tween the generalized focal loss and trade-off loss increases.
In contrast, without LRF, the model may generate confident
wrong predictions making some of the loss values very high.
Consequently, the K-value remains large therefore reducing
the probability for the equivalence.

The above bias-variance trade-off loss consists of two
terms, where the first term indicates the bias in predicting
each data sample, whereas the second term is related to
the variance associated with the prediction. The optimiza-
tion of the above loss tries to minimize both bias as well



as variance with the trade-off determined by hyperparame-
ter C. It should be noted that the above optimization tries
to make the model more generalizable by minimizing the
variance and therefore our LRF networks become better in
terms of avoiding false confident predictions. Furthermore,
the first term ensures that we do not sacrifice the confidence
of the correct predictions. Under our ensemble framework,
we dedicate some LRF networks to focus on the represen-
tative (easy) samples by setting a smaller C value. Further,
other LRF networks can focus on more difficult samples by
setting a higher C value. As a result, these LRF networks
become complementary to each other leading to better cali-
bration for the final ensemble.

4 Experiments
We evaluate the performance of our proposed framework on
multiple existing VQA models. For the evaluation, we fol-
low the experimental setup of (Whitehead et al. 2022). To
showcase the effectiveness of our technique, we report com-
parative quantitative results both in-distribution as well as
out-of-distribution data. Further, we also conducted exten-
sive qualitative analysis and ablation study to justify our ap-
proach. Due to limited space more results related to ablation
study and qualitative analysis can be found in the Appendix.
Baselines. The “Baseline” in our tables indicates original
VQA models, without any calibration mechanism. The max-
imum output probability is used as the confidence in the pre-
dicted answer. We also compare our approach to Tempera-
ture Scaling (TS) (Guo et al. 2017), Vector Scaling (Guo
et al. 2017; Platt et al. 1999), and Selector (Whitehead et al.
2022) which are post-hoc calibration techniques. TS and
Vector Scaling are standard calibration methods. The selec-
tor is trained as a regression task, where targets are the actual
accuracy of the VQA model on the samples. All add-hoc cal-
ibration methods are trained on an additional validation data
split, and hence require the availability of additional data,
while the base VQA model layers are frozen.
Datasets. We experiment on the VQA-v2 (Goyal et al.
2017) and AdVQA (Sheng et al. 2021) datasets, respec-
tively as in-distribution and out-of-distribution datasets. Ad-
ditional experiments on VizWiz dataset (Gurari et al. 2018)
are included in the Appendix due to space constraints. VQA-
v2 dataset contains questions on the COCO image dataset,
with 10 ground-truth answers per each question. The train-
ing split includes 443, 757 questions. As the ground-truth
answers of the test split of VQA-v2 are not publicly avail-
able, we use the validation and test splits as provided by
(Whitehead et al. 2022). The test split consists of 106k, and
the validation split consists of 86k questions used. AdVQA
dataset comprises of human-adversarial questions, on the
same images as VQA-v2, crafted manually that are chal-
lenging to answer by models that are trained on VQA-v2.
To assess the robustness against OOD examples, we evalu-
ate models on a mixture of 90% ID, and 10% OOD questions
from their corresponding test splits.
Backbone VQA models. We have extensively evaluated
the performance of our presented framework by consider-
ing six different VQA architectures: LXMERT (Tan and

Bansal 2019), Pythia (Jiang et al. 2018), CLIP-ViL (Shen
et al. 2021), ViLBERT (Lu et al. 2019), and Visual-bert
(Li et al. 2019), as well as the BEiT-3 (Wang et al. 2023)
foundation model. Pythia (Jiang et al. 2018) is a bottom-
up top-down model, and the winning model in the 2018
VQA challenge which leverages up-down attention mech-
anism (Anderson et al. 2018), and combines the represen-
tations of question and image by element-wise multiplica-
tion. CLIP-ViL (Shen et al. 2021) uses the Movie-MCAN
architecture (Nguyen, Goswami, and Chen 2020) with the
visual encoder of the CLIP (Radford et al. 2021) pre-training
model. LXMERT (Tan and Bansal 2019), ViLBERT (Lu
et al. 2019) and VisualBert (Li et al. 2019) are pre-training-
based transformer architectures with an attention mecha-
nism. BEiT-3 is a general-purpose vision-language model
trained by masked-data modeling.
Evaluation Metrics. We evaluate using VQA accuracy,
ECE, overconfidence (OC), and selective prediction perfor-
mance measured through C@R at various risk levels: 1%,
5%, 10%, 20% as in (Whitehead et al. 2022). While our pri-
mary objective is to improve the calibration of VQA models,
we also report VQA accuracy metrics into our evaluation in
order to ensure that our model yields better calibration per-
formance with comparable/better prediction performance.

4.1 Comparison Results
We evaluate the ID performance of the models and measure
the generalizability of out-of-distribution scenarios. Table 1
offers a comparative analysis of our proposed method, GLEN
against the baseline and other calibration techniques. It’s ev-
ident that, across all VQA backbone models, GLEN achieves
significantly lower ECE and OC scores than all competitors
while achieving similar or better accuracies. Notably, our
model exhibits an ECE improvement of approximately 11%
over the second-best baseline on the VisualBERT model.
Additionally, GLEN surpasses the baseline in terms of se-
lective prediction, particularly in the C@1 metric accross all
VQA architectures. Despite the competing calibration tech-
niques benefit from additional training on a separate data
split for confidence calibration, they fall short of GLEN or
match GLEN in selective predictions, on LXMERT, Pythia,
VisualBERT, and ViLBERT models. It’s noteworthy that, a
poorly calibrated model may still perform well in terms of
C@R metrics if the ordering of confidences matche their
corresponding accuracies. The results underscores our tech-
nique’s ability to significantly enhance model calibration,
while also improving selective prediction performances. The
effectiveness of GLEN in improving ECE is detailed for ViL-
BERT, VisualBERT and CLIP-ViL in Figure 8 in Appendix
(Mozaffari, Sapkota, and Yu 2024).

The true value of enhanced calibration of models becomes
apparent when dealing with OOD inputs that the models
have not been trained to answer. In such cases, the models
should naturally exhibit lower confidence in answering these
inputs. As corroborated by Table 1, our method consistently
achieves better calibration through lower ECE and OC, and
outperforms or is comparable to the baselines in terms of se-
lective prediction metrics. Particularly, considering the ViL-
BERT model, the proposed model has an improvement over



ID ID+OOD
Model Acc.↑ ECE↓ OC↓ AUC↓ C@1↑ C@5↑ C@10↑ C@20↑ Acc.↑ ECE↓ OC↓ AUC↓ C@1↑ C@5↑ C@10↑ C@20↑

L
X

M
E

R
T Baseline 73.06 0.14 0.56 8.74 12.89 42.54 62.63 88.73 69.23 0.16 0.56 11.24 2.55 31.55 51.75 81.28

TS 73.06 0.13 0.54 8.74 12.89 42.54 62.63 88.73 69.23 0.15 0.54 11.24 2.55 31.55 51.75 81.28
VectorScale 73.01 0.10 0.51 8.52 17.15 43.75 63.13 88.84 69.16 0.12 0.51 10.94 8.27 33.90 52.62 81.53

Selector 73.06 0.09 0.52 8.34 19.42 45.24 64.29 88.68 69.23 0.11 0.52 10.51 12.16 37.31 55.04 81.94
GLEN 72.93 0.06 0.46 8.31 19.46 45.38 64.03 88.92 69.07 0.08 0.46 10.74 10.88 36.01 53.14 81.61

Py
th

ia

Baseline 65.67 0.14 0.51 13.56 6.12 26.28 42.85 72.67 62.01 0.16 0.51 16.24 3.34 20.22 34.96 63.14
TS 65.67 0.10 0.46 13.56 6.12 26.28 42.85 72.67 62.01 0.12 0.46 16.24 3.34 20.22 34.96 63.14

VectorScale 65.59 0.09 0.45 13.45 7.54 26.47 43.19 73.13 62.01 0.11 0.45 16.10 4.10 20.33 35.21 64.54
Selector 65.67 0.11 0.50 13.34 8.34 27.48 43.51 73.48 62.01 0.13 0.49 15.87 5.57 21.90 36.48 64.98
GLEN 66.15 0.06 0.41 12.94 9.04 28.23 44.85 74.53 62.51 0.07 0.40 15.57 4.76 22.08 36.88 66.13

C
L

IP
-V

iL

Baseline 69.95 0.18 0.58 10.77 6.78 34.01 54.23 82.57 66.29 0.20 0.58 13.39 1.50 24.87 44.48 73.33
TS 69.95 0.16 0.55 10.77 6.78 34.01 54.23 82.57 66.29 0.18 0.56 13.39 1.50 24.87 44.48 73.33

VectorScale 69.81 0.15 0.54 10.59 12.88 35.65 53.92 82.29 66.16 0.16 0.54 13.07 7.43 27.99 45.43 73.70
Selector 69.95 0.13 0.55 10.25 14.02 37.33 55.74 82.82 66.29 0.15 0.54 12.56 9.92 30.31 47.14 75.27
GLEN 70.05 0.08 0.45 10.46 10.32 35.65 54.61 83.14 66.29 0.10 0.45 13.06 7.01 27.00 43.84 75.10

V
iL

B
E

R
T Baseline 66.98 0.19 0.57 13.00 1.70 24.54 45.10 75.93 63.20 0.21 0.57 15.92 0.00 16.22 35.17 65.83

TS 66.98 0.17 0.54 13.00 1.70 24.54 45.10 75.93 63.20 0.18 0.54 15.92 0.00 16.22 35.17 65.83
VectorScale 66.87 0.14 0.52 12.69 7.33 28.05 45.60 76.38 63.20 0.16 0.51 15.39 3.01 20.65 36.82 67.00

Selector 66.98 0.15 0.55 12.25 9.64 30.42 47.65 77.01 63.20 0.16 0.53 14.81 6.84 24.27 38.71 68.72
GLEN 66.90 0.05 0.39 12.22 9.23 29.60 47.99 77.21 63.34 0.06 0.38 14.78 3.83 22.56 39.14 69.39

V
is

ua
lB

E
R

T Baseline 64.92 0.14 0.50 14.06 6.06 24.75 41.22 71.31 61.39 0.16 0.50 16.69 3.35 18.48 33.91 61.56
TS 64.92 0.14 0.49 14.06 6.06 24.75 41.22 71.31 61.39 15.02 48.66 16.69 3.35 18.48 33.91 61.56

VectorScale 64.83 0.14 0.50 14.03 6.25 25.60 41.29 70.94 61.29 0.15 0.50 16.62 5.07 19.37 34.18 61.30
Selector 64.92 0.15 0.54 13.79 6.78 26.53 42.43 71.90 61.39 0.16 0.53 16.19 5.59 21.40 35.92 63.71
GLEN 65.26 0.03 0.36 13.30 7.66 28.03 43.66 73.56 61.73 0.03 0.35 15.79 5.32 22.24 36.77 65.23

Table 1: Performance comparison on the VQA-v2 test split (Whitehead et al. 2022) (ID) and AdVQA test split (OOD). In the
ID+OOD setting, we test on a mixture of 90% ID and 10% OOD.

Model Acc.↑ ECE↓ OC↓ AUC↓ C@1↑ C@5↑ C@10↑

BEiT-3
Baseline 74.68 0.09 0.55 7.78 14.86 47.62 66.89

VectorScale 74.51 0.08 0.54 7.81 18.01 48.16 57.40
GLEN 74.95 0.02 0.43 7.43 17.93 48.66 68.36

Table 2: Performance comparison for BEiT-v3 model.

10% on ECE, 13% on OC compared to the best competitor.
This indicates that our model is extremely well calibrated
and can be generalized well in the unknown environment
where we encounter multiple out-of-distribution samples.

We also evaluate GLEN on a state-of-the-art large foun-
dation model BEiT-3 model, fine-tuned on VQA-v2 in com-
parison with the standard VectorScale calibration. As shown
in Table 2, the baseline BEiT-3 model shows superior accu-
racy and calibration performance as compared to the models
presented in Table 1. Despite baseline BEiT-3 model’s better
calibration, our method further improves its calibration, re-
ducing the ECE from 0.09 to 0.02, while simultaneously en-
hancing selective prediction performance. This underscores
the robustness of our approach in effectively calibrating even
highly accurate models, leading to more reliable and confi-
dent predictions across diverse scenarios.

4.2 Ablation Study
To further showcase the effectiveness of our proposed com-
ponents, we have present the performances of different com-
ponents on Pythia and VisualBERT models in table 3. As
shown, without low-rank factorization and ensemble tech-
nique, the “Baseline” model exhibits poor calibration, as ev-
idenced by its high ECE and OC scores. Constructing an en-
semble on multiple dense VQA models somewhat improves
the accuracy and ECE score. However, the ensemble tends to
inherit the overfitting issues inherent in the individual mod-

Model Acc.↑ ECE↓ OC↓ AUC↓

Pythia
Baseline 65.67 0.14 0.51 13.56
Ensemble 66.75 0.13 0.51 12.62

LRF Ensemble 66.62 0.09 0.45 12.66
GLEN 66.15 0.06 0.41 12.94

VisualBERT
Baseline 64.92 0.14 0.50 14.06
Ensemble 66.79 0.12 0.49 12.36

LRF Ensemble 66.41 0.09 0.43 14.37
GLEN 65.26 0.03 0.36 13.30

Table 3: Ablation study demonstrating the effectiveness of
GLEN components, on the VQA-v2 dataset.

els. Performing the low-rank matrix factorization in the later
layers of models in the ensemble enhances the calibration
performance. Yet, the LRF networks may still lack suffi-
cient diversity, leading to sub-optimal performances. In con-
trast, by introducing diversity among the LRF networks by
the generalized focal loss, GLEN significantly enhances both
ECE and OC scores, without compromising accuracy. Fur-
ther ablation studies are provided in the Appendix F (Mozaf-
fari, Sapkota, and Yu 2024).

5 Conclusion
By performing low-rank factorization on the VQA models,
GLEN effectively alleviates the overconfidence issue while
ensuring that the representation capabilities of VQA mod-
els are retained. Coupled with a generalized focal loss en-
semble framework, the proposed technique ensures to train
a diverse set of low-rank networks in the ensemble, each fo-
cusing on different data distributions, thereby complement-
ing each other. This results in a better-calibrated ensem-
ble model. Experimental results on both in-distribution and
out-of-distribution scenarios using VQA-v2 and AdVQA
datasets validate GLEN’s effectiveness, showing its superi-
ority in enhancing the VQA calibration.
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